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ABSTRACT

One of the most striking manifestations of instability in solid mechanics is the localiza-
tion of shear strain into narrow bands during high speed, plastic deformations of metals.
According to one theory, the formation of shear bands is attributed to effective strain-
softening response, which results at high strain rates as the net outcome of the influence of
thermal softening on the, normally, strain-hardening response of metals. Our objective is
to review some of the insight obtained by applying nonlinear analysis techniques on simple
models of nonlinear partial differential equations simulating this scenario for instability.
First, we take up a simple system, intended as a raradigm, that describes isothermal shcar
deformations of a material exhibiting strain softening and strain-rate sensitivity. As it
turns out, for moderate amounts of strain softening strain-rate sensitivity exerts a disspa-
tive effect and stabilizes the motion. However, once a threshold is exceeded, the response
becomes unstable and shear strain localization occurs. Next, we present extensions of these
results to situations where explicit thermal effects are taken into account.
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Nonlinear analysis techniques for shear band formation at high strain-rates

Athanasios E. Tzavaras

Department of Mathematics, University of Wisconsin, Madison, WI 57306.

One of the most striking manifestations of instability in solid mechanics is the localiza-
tion of shear strain into narrow bands during high speed, plastic deformations of metals.
According to one theory, the formation of shear bands is attributed to effective strain-
softening response, which results at high strain rates as the net outcome of the influence of
thermal softening on the, normally, strain-hardening response of metals. Our objective is
to review some of the insight obtained by applying nonlinear analysis techniques on simple
models of nonlinear partial differential equations simulating this scenario for instability.
First, we take up a simple system, intended as a paradigm, that describes isothermal shear
deformations of a material exhibiting strain softening and strain-rate sensitivity. As it
turns out, for moderate amounts of strain softening strain-rate sensitivity exerts a dissipa-
tive effect and stabilizes the motion. However, once a threshold is exceeded, the response
becomes unstable and shear strain localization occurs. Next, we present extensions of these
results to situations where explicit thermal effects are taken into account.

INTRODUCTION

Shear bands are regions of intensely concentrated shear strain that are observed during
the plastic deformation of many materials and often precede rupture. Their occurrence
is typically associated with strain softening type response, past a critical strain, of the
measured average shear stress versus the measured averaged shear strain. The diversity
of materials and deformation conditions associated with observations of shear bands has
lead to various theories and corresponding models for explaining their formation. Some
type of strain-softening mechanism lies in the core of most theories, however, the origin of
softening is often context dependent, hinging on the material under consideration and the
geometric and loading circumstances.

In this article, we focus on a theory suggested for explaining the formation of shear
bands during high speed, plastic deformations of metals. It was recognized by Zener
and Hollomon [34] that, at high speed processes, the effect of the deformation speed is
twofold: First, an increase in the deformation speed changes the deformation conditions
from isothermal to nearly adiabatic. Second, strain rate has an effect per se and needs to
be included in the constitutive modeling.

Under isothermal conditions, metals in general strain harden and exhibit a stable" /
response. As the deformation speed increases, the heat produced by the plastic work
triggers thermal effects. In particular, thermal-softening properties of metals may outweigh 0
the tendency of the material to harden, so that the combined outcome results to (effective) 0

softening. A destabilizing feedback mechanism is then induced, operating according to the
following scenario ( Clifton, Duffy, Hartley and Shawki [11]): Nonuniformities in the strain
rate result in nonuniform heating. Since the material is softer at the hotter spots and
harder at the colder spots, if heat diffusion is too weak to equalize the temperatures, the Codos
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initial nonuniformities in the strain rate are, in turn, amplified. This mechanism tends to
localize the total deformation into narrow regions. On the other hand, there is opposition
to this process by "viscous effects" induced by strain-rate sensitivity. The two effects are
competing and which one prevails depends on the relative weights of thermal softening,
strain hardening and strain-rate sensitivity, as well as the loading circumstances.

Experimental, numerical and linearized analysis studies indicate that, at least when
the degree of thermal softening is large, the competition results to instability in the form of
strain localization and formation of shear bands (e.g. Clifton, Duffy, Hartley and Shawki
[11], Drew and Flaherty [17], Wright and Batra [31], Burns [3], Anand, Kim and Shawki
[1], Wright and Walter [32]). There is an extensive literature on the subject and the
reader is referred to the article by Shawki and Clifton [23] for an excellent survey. In the
present article we review recent analytical results on simple constitutive models, where the
interplay of various contributing factors on shear strain localization is assessed.

DESCRIPTION OF THE MODEL

Typically, shear bands appear and propagate as one-dimensional structures (up to interac-
tion times). Focusing on their development and evolution, we consider a one-dimensional,
simple shearing deformation. In a Cartesian coordinate system, consider an infinite plate
of unit thickness located between the planes x = 0 and x = 1. For a simple shearing
motion, the only nonvanishing velocity component corresponds to the shearing direction
and all the field variables depend only on the x-coordinate. Neglecting the normal stresses,
the thermomcchanical process is described by the list of variables:

velocity: v(x,t)

shear strain: u(x,t)

temperature: 0(x,t)

heat flux: q(x,t)

shear stress : o(x,t).

They are connected through the balance of linear momentum

Vt = 0 z, (1)

kinematic compatibility
Ut = Vr, (2)

and the balance of energy equations

0t = q, + Oit. (3)

Above, the reference density and specific heat have been taken constants (set equal to 1).
The following set of constitutive assumptions are used throughout:

q =0, (4)
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a = f(8, u, ut), (5)

where f is a smooth function with f(O,u,O) = 0 and fp(O,u,p) > 0, for p :# 0. A discus-
sion of the constitutive assumptions follows, but note that, in terms of classification, the
resulting system (1-5) belongs to the framework of one-dimensional thermoviscoelasticity
and is compatible with the requirements imposed by the Clausius-Duhem inequality.

It is instructive to present a derivation of (4 - 5), starting from a constitutive theory
appropriate for thermal elastic-viscoplastic materials (see Shawki and Clifton [23] for a
detailed derivation starting from a three-dimensional model; also Needleman [22]). In this
context, it is assumed that the shear strain u be decomposed, additively, into elastic and
plastic components: u = u" + uP. The elastic component ue satisfies linear elasticity with
shear modulus G, that is ue =ua. The evolution of the plastic component is dictated by
a plastic flow rule:

u= g(0,a) or o=f(,uPu ), (6)

where g is an increasing function in the variable a, and f(0, u, .) is the inverse function of
g(O, u, .). In summary,

11 or +u p = u

G + g(,uP,,a) = (7)

For the heat flux either a Fourier law, q = k9z, is used, or it is asserted that the process
is adiabatic, i.e. q = 0. Imposing adiabatic conditions projects the belief that, at high
strain rates, heat diffusion operates at a slower time scale than the one required for the
development of a shear band. It appears a plausible assumption for the shear band initi-
ation process, but not necessarily for the evolution of a developed band, due to the high
temperature differences involved. Equations (1), (3) and (7), together with a Fourier law
for the heat flux, are regarded as modeling the essential features of shear strain localization
in thermal elastic-viscoplastic materials. They lead to the model (1 - 5), by neglecting the
elastic effects (G = oo and u = uP) and working under adiabatic conditions.

Viewing (5) as a plastic flow rule suggests the following terminology: The material
exhibits thermal softening at the state variables (0, u,p) where fo(O, u,p) < 0, strain hard-
ening where f,, (,u,p) > 0 , and strain softening where f,, (,u,p) < 0. Th, amounts
of the slopes of f in the directions 0, u and p measure the degree of therm .t softening,
strain hardening (or softening) and strain-rate sensitivity, respectively. The difficulty of
performing high strain-rate experiments causes uncertainty as to the specific form of the
constitutive relations. As a result various models have been used in the literature. Ex-
amples of specific, experimentally fitted, constitutive models can bc found in Shawki and
Clifton [23]. The following are used for the purpose of illustration- in this article:
Empirical power law with parameters v < 0, k and n > 0

a = 9t/u'U . (8)

Exponential type of law

o =e . (9)
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The parameters v, k and n in the power law (8) serve as measures of the degree of thermal
softening, strain hardening (or softening) and strain-rate sensitivity. The exponential law
(9) does not-exhibit any strain hardening and the parameters /3 and n measure the degree
of thermal softening and strain-rate sensitivity, respectively.

Isothermal vs. adiabatic deformations

To illustrate the effect of thermal softening on spatially uniform deformations, the isother-
mal and adiabatic cases are contrasted. Consider a theoretical experiment where the
plate is subjected to steady shearing. Mathematically, that corresponds to prescribing the
boundary velocities, say v = 0 at x = 0 and v = 1 at x = 1.
(i) In an isothermal deformation the temperature is kept constant, say 00, by appropriately
removing the produced heat due to the plastic work. The "measured" stress-strain response
in this idealized situation coincides with the E-U graph of E = f(0o, U, 1). The slope of the
graph is measured by f(00, U, 1); hence, for a strain-hardening material E is monotonically
increasing with U.
(ii) The situation in an adiabatic deformation is understood by studying a special class of
solutions to (1 - 5) describing uniform shearing. These are

i(x,t) = x
fl(x,t) = U(t) := t + uo (10)

O(x,t) = 0(t),

where
dOd- = f(O, t + u0, 1) (1

0(0) = Oo

and uo, 00 are positive constants, standing for the initial strain and temperature. Accord-
ingly, the resulting stress is given by

E(t) = f(O(t),t + u0, 1). (12)

The effective stress-strain curve coincides with the E - t graph, and the material exhibits
effective hardening in the increasing parts of the E - t graph and effective softening in the
decreasing parts. Thus, pending on the sign of the quantity fe f + f", the combined effect
of strain hardening and thermal softening can deliver net softening. For instance, consider
the case of a strain-hardening (k > 0) power law (8). The uniform shearing solutions then
read

U(t) = t + u0

+)[(t= +0U)k+1 _ Uk+1 (13)

E(t) 0,(t)(t + uO)k,

and a simple computation yields
dY = k + k k 1uo~l]]

t(t + [0 T1 0
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For parameter values ranging in the region v + k < 0, E(t) may initially increase but
eventually decreases with t.

A hierarchy of models

It is generally maintained that strain softening has a destabilizing influence, tending to
amplify small nonuniformities. At the analytical level, this belief is illustrated by the
simple model

Vt = (u)(15)

Ut -= ,

with r'(u) < 0, describing isothermal motions of a strain-softening, inelastic material.
The system (15) is elliptic in the t-direction, and the initial value problem is ill-posed.
Nevertheless, it admits the class of uniform shearing solutions 7(x, t) = x, ii(x, t) = t + u0.

Because of the inherent instability induced by strain softening, it has been postulated
that higher order effects, such as strain-rate dependence, are triggered in the course of
the motion and need to be accounted for in the constitutive modeling (e.g. Needleman
[22], Wu and Freund [33]). Strain-rate dependence competes with strain softening, tending
to diffuse nonuniformities in the strain-rate and/or the stress, and it may hinder or even
altogether suppress instability [26, 28]. First, we present a quantitative analysis of this
competition in the context of the isothermal model

Vt = (r(u)v"), (16)

Ut = z

with the function r(u) satisfying

r(u) > 0 and '(u) < 0. (Ho)

Note that (16) is a regularization of (15) incorporating rate-dependence effects. Different
types of rate-dependent constitutive laws have also been employed in the study of shear
bands (e.g. Wu and Freund [33]), as well as strain-gradient dependent constitutive laws
(e.g. Coleman and Hodgdon [12], Zbib and Aifantis [35]).

Next, we proceed in the framework of the thermomechanical model (1 - 5), and review
investigations [27, 30] of the model

vt = WOu)vZ')X
Ut = vX (17)

Ot = (Ou)v' + 1

System (17) arises by substituting in (1 - 4) the simplified version of the constitutive
relation (5)

a = P(O, u)u', (18)

where the smooth function p(O, u) satisfies

p(O,u) > 0, (H)
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rendering (17), parabolic, and
/18(0, u) < 0, (H 2 )

determining a thermally softening material. Both strain hardening (j,,(0, u) > 0), strain
softening (pu(O, u) < 0), or combinations thereof are admitted as possibilities. Instead, it
is postulated that

Ope(0,,u) + up (0,u) < 0. (H 3 )

This guarantees that, in the course of the motion, thermal softening prevails over strain
hardening so that the material eventually exhibits net softening.

When p(, u) is independent of 0, the first and second equations in (17) decouple
from the third and lead to (16). The system (16), when supplemented with Hypothesis
(H 0 ), may be viewed as an isothermal model where thermal effects are implicitly taken
into account. That is, the combined outcome of thermal softening and strain hardening, a
coupling effected through the neglected energy equation, results to net softening, which is
in turn reintroduced as an assumption by imposing (Ho).

Another interesting simplification occurs when p(0, u) is independent of u, corre-
sponding to materials that do not exhibit strain hardening. In this case the first and third
equations in (17) decouple from the middle one and lead to the system

Vt = )v . (19)

Note that (19) can also be interpreted as describing simple shearing of a non-Newtonian
fluid with temperature dependent viscosity. Strain independent constitutive relations were
the first to be analytically investigated [15, 5-7, 25, 8, 2], and their study motivated several
of the ideas presented here.

Initial and boundary conditions

The governing system of partial differential equations is taken over (x, t) E [0, 1] x {t > 01.
It is supplemented with initial conditions

v(x,0) = vo(x), u(X,0) = uO(X), 8(X,0) = 90(X), (20)

for 0 < x < 1, and as a consequence

a(x, 0) = ao0(X) := P(0(x), uo(x))vOx(x ). (21)

On occasion, the initial data are used to provide initial nonuniformities in one or more of
the field variables in order to monitor their evolution.

Two distinct sets of boundary conditions are considered:

a(0,t)=a(1,t)=1, t>0, (22)s

corresponding to prescribed tractions at the boundaries, and

v(0,t) = 0, v(1,t) = 1, t >0, (22)v
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corresponding to steady shearing of the plate boundaries. The resulting initial-boundary
value problems, consisting of (17) (or (16), or (19)), (21) and (22), are denoted by (P)s
when (2 2 )s are used, and by (P)v when (2 2 )v are used.

Preliminary information

For the validity of the model, it is necessary that solutions comply with the sign restrictions
a > 0, ut > 0, u > 0 and 0 > 0. Indeed, the constitutive law (16) arises as a simplification
of (7) by neglecting the elastic effects; on the other hand, when ut becomes zero the plastic
flow stops and elastic effects become dominant. The last two restrictions are then a matter
of a transformation of dependent variables.

An existence and continuation theory that covers the above models is carried out in
Ref [28]. It requires smooth initial data, together with hypothesis (HI), and yields a unique
classical solution (v(x, t), u(x, t), O(x, t)) of (P)s (or (P)v), satisfying ar > 0, ut > 0, u > 0
and 0 > 0. The solution is defined on a maximal time interval of existence [0, T*), which
in general could be infinite or finite. An existence theorem of weak solutions for (19) (with
n = 1) is carried out by Charalambakis and Murat [8].

In the remainder we record information on the behavior of solutions, with the following
broad objectives: (a) To assess in a quantitative fashion the interplay of thermal softening,
strain hardening and strain-rate sensitivity and their effect on the response of shearing
motions. (b) To examine the circumstances that lead to the developement or evolution of
nonuniformities in the field variables.

ON THE COMPETITION OF STRAIN SOFTENING AND STRAIN-RATE
SENSITIVITY

First, we take up the isothermal model (16), associated with the constitutive relation

a = 'r(u)u' (23)

under hypothesis (HO).The system (16) may be viewed for small n as a regularization of
the elliptic system (15). On the other hand, (16) belongs to what is formally classified as
hyperbolic-parabolic systems, what appears in discord with the view as a regularization
of an elliptic system. To reconcile the two aspects, recall that (16) admits the uniform
shearing solutions

V(x,t) = x i(x,t) = t +uo &(x,t) =r(t + uO), (24)

and consider a perturbation of them

v(x,t) = x + V(x,t) (25)

U(X t) = (t + Uo) + U(x,t).

The linearized equations for (V, U) are easily computed:

Vt = nT-(t + uo) V,, + r'(t + uo)Ut (26)

Ut = V(
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Under hypothesis (H 0 ), when n = 0, (26) becomes an elliptic system.
Regarding the effect of the boundary conditions, we remark that, for a strain softening

material, the amount of external work required to prescribe the tractions is greater than
the amount required to prescribe the velocities. It is thus expected that the shearing
deformation is more intense in the former case, causing favorable conditions for unstable
response. In the course of shearing, under either kind of loading, the material is strained
and the diffusion coefficient in the parabolic equation (16), is decreasing. If the decrease
is too rapid and/or spatially nonuniform, it is conceivable that the diffusion is unable to
stabilize the motion, possibly resulting to spatially nonuniform structures.

Both of the initial-boundary value problems (P)s and (P)v for the quasilinear system
(16) admit classical solutions (v(x, t), u(x, t)), defined on a maximal time interval [ 0, T*)
and subject to the sign restrictions a > 0, ut > 0, u > 0 [28]. As an outcome of a
continuation theorem, if T* is finite, at the critical time the strain and strain rate blow up

lim sup u(x,t) = 00
t--T" 0<x<l 

(27)
limsup sup ut(x,t)=oo

t-T, 0<z<l

in a way that the total stress remains bounded

0 < a = r(u)u' < max ao(x). (28)0 <x<l

The response predicted by (27) and (28) is compatible with expectations that the
strain and strain-rate are very large in the interior of a shear band and suggests to look at
shear band formation as a blow-up type of problem. This point of view appears instructive
as a first attempt of analytical approach to the problem, but is probably too restrictive.
It leads though to the question of characterizing whether solutions are globally defined or
break down in finite time.

To this end, it is useful to write (23) in the form

t
D(U(Xt)) = (U0 (X)) + ] aW(x,7)d7, (29)

where
-4(U) :=A (30)

Then, blow up of solutions is related to the convergence of the integral

(D(oo) = r( ) d . (31)

Indeed, in the case of the problem (P)s, evaluating (31) at x = 0 or x = 1 leads to

1(u(i, t)) = q(u 0 (i)) +t , i = 0,1. (32)
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In turn, if T(oo) < oo, (32) implies

u(i,t) --+ oo as t --+ Ti, (33)

with T = t(oc)- (u0 (i)) < c for i = 0, 1, and the solution breaks down in finite time. It
turns out that this criterion provides a complete characterization for blow-up of solutions

in the case of (P)s
T= oo if and only if D(oo) = o. (34)

However, in the case of the problem (P)v,

if 4(oc) = oo then T* = oo, (35)

but the converse is an open problem.
The role of the integral (31) in localization problems is brought forth in the work of

Molinari and Clifton [21]. They introduce the concept of "Lo,-localization", and use an
approach developed by Hutchinson and Neale [19] for the uniaxial tension of a ba,, to
characterize Lo,-localization of the strain with the convergence of the integral (31).

In what follows, we record some information pertaining to the behavior of solutions.
The two problems are treated separately, (P)s in this section and (P)v in the following.
The reader is referred to [28, 29] for details of the derivations.

Prescribed tractions

The class of positive, decreasing constitu;ive functions r(u) can be decomposed into two
categories, depending on whether '1(oo) is finite or infinite. Roughly speaking, the dividing
line consists of functions 7-(u) that decay to zero like the power u - n

In case r(u) - 7o a constant, oa(x, t) is a positive solution of

a )t =m u (36)

subject to the boundary conditions (2 2 )s, and a(x, t) -- 1 uniformly in x E [0, 1] as t - oo.
We ask whether this behavior persists for positive and decreasing functions r(u).

Two representative classes of functions r(u) are considered: Class (He) consists of
functions that decay to a positive constant r(oo) at a rate dominated by a power, i.e., for
some c > 0 and a > 0

c
7() (00) > 0 0 < -7(U - , U > 0.(c

UC*

Class (Hp) consists of powers
1

7(U) = L- (Hp)

According to (34), T* is infinite when m < n, but finite when m > n.
The system (16) can be recast int,- an equivalent formulation consisting of a reaction-

diffusion equation (with variable diffusion) coupled to an ordinary differential equation

orn =. + (a (37)
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Ut = (38)

We ask the question: Which out of the reaction and diffusion terms of the parabolic
equation (37) dominates in the course of the motion? The technical vehicle for answering
this question is by classifying the steady super and sub-solutions of (37). The coefficients
are viewed as unknown functions with the only available information that ut > 0. For
functions of class (He) the diffusion term always dominates, while for powers (Hp) the
diffusion term dominates for parameter values 0 < m/n < 1/2 and the reaction term
dominates for m/n > 1/2.

Dominant diffusion

Combining this analysis with parabolic type energy estimates it turns out that, for func-
tions 7(u) of class (He) and for powers (Hp) satisfying 0 < m/n < 1/2, the shear stress
a(x,t) is attracted to the constant state a = 1, while u(x,t) behaves asymptotically as a
function of time alone [28]: As t -* oo

a(Xt) = 1 + O(t-0), (39)

] r()7d = t + O(] s-Ods) (40)

uniformly on [0,1], with 0 </3 < 1. Precisely, = , > 0 for (He) and 3 = ,,-2m for (Hp).
The response in this case is similar to the response of (36).

Weak diffusion

For powers with exponent m/n > 1/2 (including the parameter values where solutions
blow up) the following holds [29]: If S(x) is a positive function satisfying

i n
u 0 (X) n'L1S(X)n > -SX(X) (1M (41)

S(x) _ UO(X),

then the corresponding solution of (P)s satisfies

a(x,t) < S(X). (42)

In turn, (29) induces corresponding bounds for u(x, t). The implications of some specific
choices for S(x) are examined below.

Consider first the one-parameter family of functions SQ(x) = 1 - &x(1 - x), with
0 < a < 4. Then (41) implies the restriction on the initial data

a0 (x) < S 0 (x) , uo(x) >u, := n [<X <1. (43)
_m (1 -
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Note that u,, --4 0 and S, --+ 1 as a --+ 0. No matter how close to the state a M 1 the

initial stress is, it satisfies thereafter

a(x,t) S"(x) = 1 - ax(1 - x) (44)

and can no longer approach the state a - 1. We conclude that in the region m/n < 1/2
diffusion is too weak to uniformize the stress, and initial nonuniformities, however small,
persist in time.

Next, consider a positive, convex, and symmetric with respect to x = function
2

S-,(x), that drops fast from S.,(0) = 1 to approximately a constant level 7, stays there over
almost the entire interval, and then increases fast to the value S.(1) = 1. An example of
such a function is provided by

S-t(x ) = 7+ (1 - "7)[xN + (I - x)N], (45)

for N a large positive integer and 0 < y < 1. Let the initial stress uo(x) be symmetric
with respect to x = 1, with uo(x) < uo(0) = uo(1). Compatibility with (41), dictates
that uo(x) be sufficiently large in a neighborhood of x = 0 and x = 1. It could be a
sufficiently large constant. Take Sy(x) as the initial stress and uo(x) as the initial strain
and let (a-, (x,t), u (x,t)) be the corresponding solution of (P)s.

Then a,(x,t) satisfies (42). Regarding the behavior of u-., we look at two separate
regions:

(i) 1/2 < m/n < 1: Here T* = oc. Also

uY(x,t) _ [ n (x) ±(1 -n (X)S(x)t (46)

with (46), in fact, an equality at x = 0 and x = 1. Since u0 may be a constant function, an
initial nonuniformity in the stress, no matter how small, may induce spatial nonuniformities
in the strain u(x,t) that grow in time.

(ii) rn/n > 1: Here T* < oo. Also,

n2 (47)

&tuU(x,t) <_ S((x)x) _ ( -_ 1)S (x)t----

with equalities at x = 0 and x = 1. By the choice of S,(x) and uo(x), the right hand sides
blow up for the first time at the boundary points x = 0 and x = 1, where (47) holds as an
equality. In blowing up, they appear like two shear bands located at the boundaries.

The above considerations suggest for the case of prescribed traction loading: First,
that it is possible a small nonuniformity in the stress to produce large strain gradients
in either long time (i), or even shorter times (ii). Second, that this type of response is
concurrent with an inability of the material to diffuse the applied stresses.
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ON THE STABILITY OF THE UNIFORM SHEARING SOLUTIONS

In this Section, we take up the initial-boundary value problem (P)v, for a power law (Hp),
and investigate the stability of the uniform shearing solutions (24). First, we present a
linearized stability analysis, and then nonlinear results on the behavior of solutions.

The linearized problem

The uniform shearing solutions are time-dependent, thus leading to linearized equations
with variable coefficients. Investigations that account for the time dependence of the
coefficients in the linearized equations are presented by Burns [4], Fressengeas and Molinari
[18] and Shawki [24]. The last two works concern models that include explicit thermal
effects through the energy equation. Fressengeas and Molinari devise a relative linear
perturbation analysis that examines the decay (or growth) of the ratio of the absolute
perturbation over the time-dependent uniform solution. Shawki proceeds by means of a
quasistatic approximation for the linearized equations and connects the issue of stability
with the growth in the kinetic energy of the perturbation (see article in this volume).

Here, we work within the simple context of (26) for a power law. In compensation,
no further approximations are imposed and a complete picture emerges. It is convenient
to work with the equations for the linearized displacement

Ytt = n (t + uo)' Y.xt - m(t + uo)-m - ' Y.., (48)

with Y(O, t) = Y(1, t) = 0. These lead to (26) by setting

V = Yt U = Y. (49)

The general solution of (48) can be written as a linear combination of eigensolutions

00

Y(x,t) = Zck(t) sin k7rx, (50)

k= 1

where ck are Fourier coefficients

ck(t) = 2 Y(x,t) sink7rxdx. (51)

The evolution of ck is monitored by the differential equation

IC 4 + ()m - M Ck) = 0. (52)

For simplicity, suppose that Y(x,0) = 6Yo(x) and Y(x,0) = 5Vo(x), where b > 0 is
measuring the amplitude of the initial perturbation. Then

Ick(o)I + I(0)I _< 6k, k = 1, 2, (53)
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where 6A; = O(5) for k fixed, and its dependence with respect to k is determined by
the smoothness of Y and V. We state certain facts, that are proved in the Appendix,
concerning the response of solutions of (52)-(53) for 0 < m < 1 and n > 0.

(i) Case m/n < 1.

Given any e > 0, there is a constant C, independent of k such that

Ick(t)i <_ C, 6k (t + uO)! + _, Ick(t)l 5 CcS k (t + U0)!+e-• (54)

The above estimate is sharp, in the sense that there are initial data compatible with (53)
such that

Ck(t) _ C ,k (t + uo)l (55)

(ii) Case rn/n > 1.

For any initial data subject to (53), there is a positive constant C independent of k such
that

Ick(t)I _< C 6k (t + u0 )- , Ick(t)I 1 C k (t + uO)-'. (56)

Moreover, there are initial data, compatible with (55), such that for any E > 0 there is a
constant C, with the property

Ck(t) > Ce bk (t + UO)-!-. (57)

Since the constants in (54) and (56) are independent of k, Y and V = Yt inherit these
bounds, with the same time rates as Ck and ek respectively. Also U = Y satisfies a bound
with the same time rate as Y.

To summarize, when rn/n < 1 the amplitude of perturbations of the uniform flow
grows, at worse, slower than the uniform flow. By contrast, in the parameter region
m/n > 1 perturbations can grow faster than the uniform shear flow, and the uniform
shearing solutions are linearly unstable.

Nonlinear response for prescribed velocities

The linearized stability analysis suggests a change in the response of (P)v across the
parameter values rn/n = 1. This is confirmed by analysis of the behavior of solutions to
the nonlinear problem [28, 29].

Strong strain-rate dependence

First, we present a nonlinear stability result for the parameter region m/n < 1. Motivated
by the form of the uniform shearing solutions and the scaling invariance of the underlying
equations, we introduce the transformations

v(x,t) = V(x,s(t))

U(x, t) = (t + 1) U(x, s(t)) (58)

a(x,t) = (t + 1)-' E(x,s(t))
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with s(t) = log(t + 1). A straightforward computation shows that (E(x, s), U(x, s)) satisfy
the system of reaction-diffusion equations

0= n(1-)SU- 2 z -I -_- ( l-ne n, n M U' Mn n - 1 n(59)

Consider the system of ordinary differential equations obtained by neglecting the
diffusion term in (59). Their integral curves are the lines E = const. U sketched in
Fig 1, and their vector field vanishes along the line E = Un - ,. The form of the last line
changes drastically across the critical parameter value m/n = 1. If 0 < m/n < 1, the
theory of Chueh, Conley and Smoller [10] guarantees that (59) admits positively invariant
rectangles of arbitrary size in the first quadrant centered around the line E = U n - m ( see
Fig 1). (This property is lost in the complementary region rn/n > 1.)

= const. U- m

U

U_ U+
Fig. 1: Invariant regions for (59) when 0 < M < I.

Given positive initial data, let U-, U+, E2_ and E2+ be the defining coordinates of the
smallest rectangle containing the curve (ao(x), u(x)), 0 < x < 1. Then

E _ < E (X, s) < E+ ,u_ < (X, S) < v+ . (60)

In turn, (58) and (60) yield the relations:

IL I
Fig 1:Invriat region fr(9) when( 0 1) <1

U_(t + 1) <u(x,t) < U2+(t + 1)-"(1

l -X "7 < V) (x,t)< (+ +) 61.
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Relations (61) provide explicit bounds on perturbations of the uniform shear flow.
Using them together with parabolic-type energy estimates, it turns out that, for m <
min{n, 1}, every solution is asymptotically attracted to a uniform shear flow: As t --* c0,

v,(x,t) = 1 + O(t6- 1 )

u(x,t) = t + o(to) (62)

,C(x,t) = t-' (1 + O(t31 ))

uniformly on [0,1], with i3 max{r,m} < 1. The role of the constraint m < 1 is
explained in [28]. We remark that (62) does not exclude the presence of nonuniformities
in the strain that propagate at slower time rates, and is thus compatible with the findings
of the linearized stability analysis. However, as indicated by the bound (61)3 on the strain
rate, no catastrophic growth of strain is predicted in this parameter range.

Asymptotic behavior results such as (62) have also been established for the case of the
constitutive relation a = r(u)ut, with r(u) increasing up to a critical strain and decreasing
(but not very fast) thereafter [26]. However, the explicit bounds (61) are available only for
a power law. Such results are interpreted as indicating that eventually rate dependence
exerts a stabilizing influence that washes out nonuniformities. However, at intermediate
stages, there may be local amplification of nonuniformities in strain connected, for instance.
with undergoing through a sudden drop of the curve r(u) - u.

Weak strain-rate dependence

In the region m/n > 1, the behavior of solutions to (J')v is quite subtle and is not fully
understood at the present time. The situation in the case of prescribed tractions suggests
that unstable response be expected, at least for large values of the ratio m/n. It follows
by (2) and (2 2 )v that the average strain grows like t

1 1

1 u(xt)dx = t + Uo(X). (63)

On the other hand, the linearized analysis indicates that perturbations of the strain tend
to grow faster, like tI. It is conceivable that soon large nonuniformities in the strain
develop. At that point the linearized analysis ceases to be valid.

We discuss now the effect of a large nonuniformity in the strain (see [29], also Bertsch,
Peletier and Verduyn Lunel [2] for a similar result for (19)). The analysis applies to
constitutive functions that include powers with m/n > 1 and n < 1. Consider the initial
data

vo(X) = X 0_ <_

ffi_ 0<X<y-6 , y+6<x < 1 (64)
1 (0( -b <YUz)y-6<x<y+eS

corresponding to a concentration of strain in an interval of length 2b around a fixed point
y, and a linear initial velocity profile. We are thinking of U(x) as a bell shaped function
that attains its maximum at y, say U(y) =: LUAl, and satisfies U(y - 6) = U(y + 6) =

and U(x) > ii for x E (Y - b, y + 6) (Fig 2).
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It turns out that for UM sufficiently large:

(i) either T* is finite, in which case (27) holds,

(ii) or, as t -- co,

v(x,t) = {0O(t-) x E [O,y-,] (
1 + 0(t-') x E [Y +,b,1]

and u(x, t) converges monotonically, for x outside the band (y - 6, y + b), to some bounded
limiting function.

UUW

ii

X

Fig. 2: The initial data uo(x), vo(x) in (64).

The large time response predicted in (65) looks like a fully developped shear band, where
the parts of the material to the left and right of the band have unloaded and move inde-
pendently. The result indicates a collapse of momentum transfer across the band.

EXPLICIT THERMAL EFFECTS

In this Section we present information regarding the behavior of solutions of (P)s and (P)v
for the model (17). The model (17) is based on the constitutive relation (18), appropriate
for a material exhibiting thermal softening, strain hardening and strain-rate sensitivity,
and is studied in this generality in Refs [271 (for n = 1) and [30].

The analysis of the uniform shearing solutions (10) indicates that, when the degree of
thermal softening is large, the combined effect of thermal softening and strain hardening
results to net softening. Capturing this behavior for arbitrary solutions is the main source
of analytical difficulty in dealing with (17), and establishing a precise analogy among the
models (17) and (16). One approach to accomplish that is outlined below. Differentiating
a I with respect to t one obtains

1 1 1 -1(a n )t = , )( u),,, + -P, (6,,,)(0, I,(0,,,)),,,. (66)
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The tern- Otlp(O,u) is positive or negative depending on whether the material exhibits
effective hardening or softening along the deformation. Use of (66) and (17), leads to an
alternative formulation of the problem, consisting of

1 1)(a- ) n(0,U)a", + n 1 (POO, Uu + P-(O u)) (a) (67)n

Of= ut, (68)

and
21.

u- > 0. (69)

As in the case of (37-38), we ask which out of the reaction or diffusion terms in (67)
dominates. The analysis proceeds by classifying steady super and sub-solutions of (67).
The coefficients are viewed as unknown functions connected through (68), which controls
the relative weight of temperature and strain (see [30] for details).

This approach yields a characterization of the behavior of the field variables at the
critical time, when T* is finite. Hypotheses (HI - H 3 ) for jt(O,u) are used; at places the
additional hypothesis

j(I3 ,)d =cc forany/3>0, (H 4 )

is employed. If T* is finite, then as t -- T* the stress remains bounded by the quantity
E = max{maxo<<i ao(x), maxo< 1<i(Oo(x)/uo(x))}, the strain and strain rate behave as
in (27), while, in case (H 4 ) also holds, the temperature satisfies

lim sup 8(,t) = oo. (70)
t-T o<z<l

Global existence or blow-up of solutions to (P)s or (P)v, is related to the convergence
or divergence of the integral

M(a) y a, (71)

which measures how fast the constitutive function t decays (cf (H3 )) when the temper-
ature is proportional to the strain. As it turns out:

(i) For either of the problems (P)s or (P)v, if M(E) = cc then T* = cc.

(ii) For the problem (P)s, if M(k) < oo then T* < oc.

Here k := min{1,Oo(O)/uo(O),Oo(1)/uo(1)}. This result provides a characterization of
blow up for stress boundary conditions, but only sufficient conditions for global existence
in the case of velocity boundary conditions.

In general, the above criteria depend on the initial data. However, for certain popular
models used in the study of shear bands, they are actually independent of the data.
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(a) For a power law (8),

0 = o for v + k > -n
M~A) 4 ~ ,k+, <(o for v+k<-n (72)

Hypothesis (H 3 ) dictates the restriction v + k _< 0, while hypothesis (H 4 ) is fulfilled
whenever k > -n. We conclude that for a power law solutions of (P)s and (P)v exist for
all times for parameter values -n < + k < 0. Solutions of (P)s blow up in finite time
for parameter values v + k < -n.

(b) For an exponential law (9) with /3 positive,

m (a) = T <0 (73)

and solutions of (P)s blow up in finite time for any values of the parameters.

Power law and prescribed tractions

In the case of a power law and for shearing deformations caused by prescribed tractions it is
possible to obtain a better understanding of the behavior of solutions [30]. The parameter
region v + k < 0 can be decomposed into three subregions across which the material
response changes drastically. The situation generalizes the results for strain softening
materials (23) of class (Hp).

(i) In the region 0 < (v + k)/n < 1/2 the shear stress a(x,t) is attracted to the constant
state o - 1, as t -+ oc, while u(x, t) and O(x, t) behave asymptotically as functions of time.

(ii) In the region 1/2 < (v + k)/n < 1 the constant state a - 1 loses its stability and
spatial nonuniformities in the strain can develop and persist in time.

(iii) Finally, in the region (v + k)/n > 1, u(x, t) becomes infinite in finite time.

Most interesting, when (v + k)/n > 1/2, there are initial data for which the strain u(x, t)
develops nonuniformities around x = 0 and x = 1 and looks like two shear bands located
at the boundaries. This response is concurrent with an inability for diffusion of the applied
stresses.

Strain independent materials

At the present time, the analysis of nonlinear stability of the uniform shearing solutions
for (17) is incomplete. The available results concern the special cases that either thermal
softening or strain dependence are absent. For a strain independent power law (17) takes
the form

Vt = (Ov'+ , (74)

9t = 91Vf+l

with v < 0. From a viewpoint of analysis there are certain similarities between (74) and
(16) - (Hp). As a consequence, the response of solutions to (74) parallels the results
outlined in the previous section for (16).

First, if v > -n, every solution is asymptotically attracted as t -+ oo to a uni-
form shearing solution (Dafermos and Hsiao [15], Tzavaras [25]). Similarly to the case of
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a strain-softening, rate-dependent power law, a derived system admits invariant regions
(Bertsch, Peletier and Verduyn-Lunel [2] for n = 1, Tzavaras [30] for n 5 1). As a result,
perturbations in the temperature and strain rate of the uniform flow are controlled by
bounds (of the form (61)) depending on the data and evolving according to the time rates
of the uniform flow, given in (13) for k = 0.

Complementing the above, Bertsh, Peletier and Verduyn-Lunel [2] consider the case
of a Newtonian fluid (n = 1) and show that, for parameter values v < -1 and for an initial
temperature concentrated in a narrow region, either the solution of (74) blows up or the
velocity has an asymptotic profile of the type described in (65). Thcy also establish the
asymptotic behavior of solutions in the borderline case v = -1.

The effect of other types of loading in the stability of shear flows for temperatures
dependent fluids is studied by Charalambakis (5-7]. He considers loading effected by mixed
velocity-stress boundary shearing, inertial forces or periodic boundary shearing, and es-
tablishes sufficient criteria for stability of such flows.

The above works proceed under the constitutive assumption (4) of a non-conducting
material. Experience accumulated through studies of initial value problems in thermome-
chanics (Dafermos [13, 14], Dafermos and Hsiao [16]) suggests that heat conduction exerts
a dissipative effect hindering unstable response. Due to the high temperature differences
across a shear band, heat conduction is expected to play a significant role in problems
concerning propagation of shear bands, and may conceivably provide shear bands with
internal structure.

Insight in that direction is offered by recent works (Chen, Douglas and Malek-Madani
[9], Maddocks and Malek-Madani [20]). Their analysis applies to the system of equations
consisting of (1), (3) and the constitutive relations

q = kZ I a = e-g (75)

under isothermal boundary conditions for the temperature, and various possibilities of
loading, including prescribed tractions and prescribed velocities. The existence of steady
state solutions is studied and the presence of bifurcating branches of solutions is established.
In addition, the stability of these steady states is studied, using a direct linearized analysis
and energy estimates [9], or a variational stability approach [20].

APPENDIX

We present here the technical steps that provide the stability analysis for the linearized

problem (48). It is based on properties of the differential operator

(kr)2  m g)L~g :=/+(t + U0)- t + U0

with k = 1, 2, .... Note that if m/n = 1 then £[(t + u0 )] = 0.

Lemma. Suppose that 0 < m < 1 and n > 0.

For parameter values m/n > 1:

(i1 ) If f+(t) = (t + uo)1' then C[f+] > 0.
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(i2) Given any e > 0, there is a positive constant K, depending on e but not on k, such
that the function

f_(t) = (t + uo)'l + K,

satisfies £[f-] < 0, for t > 0.

For parameter values m/n < 1:

(ii) There is 0 < a < 1 such that the function H+(t) = (t + uo) ' satisfies £[H+] > 0, for
t>0.

(ii2 ) Given any . > 0, there is a positive T, such that the function

h+(t) = (t + uo) -
n

+
'

satisfies C[h+] > 0, for t > T,.

( 3 ) If h_(t) = (t + uo)7 then £[h-] < 0.

Proof. First, observe that

'C[(t + UO)( - 1)(t + 0

is positive for rn/n > 1 and negative for m/n < 1. This shows (ii) and (ii 3 ).
Next we turn to (i2 ). A straightforward but lengthy computation yields

, [f _ = (t + u o) - -- -2 -
mn(k ,r)2 ( + u o))2 - I

(t + Uo)m+1

where A = - )( m _ - 1). If A is negative the result follows. So, we consider the case
0 < c < !-1, for which A is strictly positive. Let T, be such that (T, +u 0 ) -m > A/.nw2 .

n
Then £[f-j < 0 for t > T,. For the remaining interval [0,Tj we attain C[fj < 0, by
choosing the positive constant K, sufficiently large.

Finally we turn to (iii) and (ii2 ). A computation yields

£[ (t + U0),y] = (t + uo)-2[(na - rn) (k7r) 2 (t + U 0 )l - m - a(1 - a)]

Let first a be sufficiently close to 1, so that that a(1 - a) < 7r2 uol-Mr(na - m) and
m/n < a < 1. For this choice of a, the corresponding function H+(t) satisfies £[H+] > 0
for t > 0. This shows (iiI). Set now a = rn/n + e and let T, be such that (T, + u0 ) 1- m >
(M + E)(1 - M- e)/cnr 2 . Then for t > T, the function h+(t) satisfies C[h+] > 0. This
shows (ii2 ) and completes the proof of the lemma.

The second ingredient of the linearized analysis is a comparison estimate for the
Gperator £[g]. Namely:

(iii) If g(r) > 0, 4(r) > 0 and £[g] > 0 for t> T, then g(t) > 0 for t > r.

Indeed, if the conclusion is violated then g admits a positive, local maximum at some point
s > r. At s it is g(s) > 0, 4(s) = 0, n(s) < 0 and thus £[g](s) < 0, which contradicts the
assumption.
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Behavior of solutions to (52)

Fix k a positive integer and let Ck(t) be a solution of (52) with initial data subject to
(53). Our goal is to monitor the time evolution of ck(t) in terms of the size 6 k of the
data. In the sequel the k-dependence of 6k is suppressed, and C will stand for a generic
positive constant that is independent of t, 6 = 6 k and the parameter k. Within the range
0 < m < 1 and n > 0 two separate regions are considered.

First case: rn/n < 1

Our first task is to show:

(iv) If Ck satisfies Ck(O) < 6, 6k(O) < 6 and IC[Ck] = 0, then for any . > 0 there is a constant
C, such that

Ck(t) _ C(6(t + uo)1 + , k(t) !5 C 5(t + u0) + ', k = 1, 2, (a.1)

To this end, let
g(t) = C 16H+(t) - Ck(t),

where H+(t) is as in (ii1 ), and the constant C1 is chosen sufficiently large so that g(O) > 0
and (0) > J. Since C[g] > 0 for t > 0, (iii) yields

Ck(t) < C 16H+(t) = C,5(t + uo)a t > 0. (a.2)

To improve this bound, observe that (52) implies

(k-) 2 n Ck(k7r)
2 M

+ (t + u0)m (t + uO)m+ .Ck (a.3)

6(k7r )2 m
<C (t + Uo)m

Whenever k is larger than C1 brn/n, 6k is decreasing. Hence,

Ck(t) 5 max{ck(0), Cbm/n} C 2b t > 0.

Consider now the comparison function

g(t) = C3 5h+(t) - Ck(t).

In view of (ii2 ), there is T, so that C[g] > 0 for t > T,. Choose C3,1 = C3 (c) such that
g(T,) > 0 and (T,) > 0. This is possible because of the preliminary estimates that are at
our disposal. Then (iii) implies

Ck(t) _< C 3 ,L6(t + Uo) - +e t > T,. (a.4)

Combining (a.2) and (a.4) yields the first part of (a.1).
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To show the second part, note that (52) implies

(krr)2 n (kr)2m
6k + (t + u0 )- k < C3,,(t + U0 )m+l (t + UO)E

Integrating the differential inequality and performing an integration by parts gives

ck(t) ck(0)exp{ -C 4 k2 [(t + U 0 ) 1-  
- l - m] }

+ Cs,6k2 j(s + o) +1-m exp{ C4k2[(s + uo) 1 -m - (t + u 0)l-m] } ds

< 6 exp{-C 4[ (t + uo)1-' m - UO 1- m 1}

+ (1,~_~-)C4 [(t uo)- +-1 uo n exp{ -C 4 k2 [(t +u 0)m U-m] }

+(1 rnn (S j + uo) +-2 exp{ C4 k2 [(s + u)l-m - (t +uo)I-m] } ds]

The last integral is estimated, with the help of L'Hopital's rule, to arrive at

Ck(t) < C6 ,e 6(t + 0/

with C6,, independent of k.
Now (54) follows by applying (iv) consecutively to Ck and -Ck. To show (55), fix the

initial data to be ck(O) = 4(O) = 6/2 and test the comparison function

g(t) = ck(t) - C76h_(t)

Then £[g] > 0 and, upon choosing C7 appropriately small, we will have g(0) > 0 and
(0) > 0. It follows that g(t) > 0, which yields (55).

Second case: m/n > 1

A similar in spirit argument as in the previous case, using the functions f+(t) and f_(t),
provides (56) and (57).
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